太阳城集团官网-太阳城官网_百家乐技巧_全讯网五湖四海 (中国)·官方网站

專 欄

首 頁

專 欄

學術報告(李進開,華南師范大學研究員,2019.05.31)

學術舉辦時間 2019年05月31日 14:00-15:00 學術舉辦地點 理學實驗樓312報告
主講人 李進開 主題 Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations ??(2019030)

學術報告

報告題目Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations   (2019030)

報告人:李進開(華南師范大學 研究員)

報告時間:20190531日(周五)下午14:00-15:00

報告地點:理學實驗樓312

 

報告摘要The entropy is one of the fundamental physical states for compressible fluids. Due to the singularity of the logarithmic function at zero and the singularity of the entropy equation in the vacuum region, it is difficult to analyze mathematically the entropy of the ideal gases in the presence of vacuum. We will present in this talk that an ideal gas can retain its uniform boundedness of the entropy, up to any finite time, as long as the vacuum presents at the far field only and the density decays to vacuum sufficiently slowly at the far field. Precisely, for the Cauchy problem of the one-dimensional heat conductive compressible Navier-Stokes equations, in the presence of vacuum at the far field only, the local and global existence and uniqueness of strong solutions, and the uniform boundedness (up to any finite time) of the corresponding entropy have been established, provided that the initial density decays no faster than $O(\frac{1}{x^2})$ at the far field. By introducing the Jacobian between the Euler and Lagrangian coordinates to replace the density as one of the unknowns, we establish the global existence of strong solutions, in the presence of vacuum, and, thus, extend successfully the classic results in [1,2] from the non-vacuum case to the vacuum case. The main tools of proving the uniform boundedness of the entropy are some weighted energy estimates carefully designed for the heat conductive compressible Navier-Stokes equations, with the weights being singular at the far field, and the De Giorgi iteration technique applied to a certain class of degenerate parabolic equations in nonstandard ways. The De Giorgi iterations are carried out to different equations to obtain the lower and upper bounds of the entropy.

[1] Kazhikhov, A. V.: Cauchy problem for viscous gas equations, Siberian Math. J., 23 (1982),44-49.

[2] Kazhikhov, A. V.; Shelukhin, V. V.: Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.

 

個人簡介:李進開,男,博士,研究員,博士生導師。2013年博士畢業于香港中文大學數學研究所,導師為辛周平教授。20138月至20167月在以色列魏茨曼科學研究所從事博士后研究工作,合作導師為Edriss S. Titi教授,20168月至20187月在香港中文大學數學系任研究助理教授,20188月起在華南師范大學華南數學應用與交叉研究中心任研究員。主要研究方向為流體動力學偏微分方程組,具體包括大氣海洋動力學方程組、可壓縮Navier-Stokes方程組等,相關成果發表于CPAM, ARMACPDE, JFA等雜志,入選第14批國家重大人才工程項目入選者。

 

上一條:地理學人講壇第215講 下一條:土木工程學院學術講座--叢正霞教授

郵編:510006        郵箱:webmaster@gzhu.edu.cn

通訊地址:廣州市大學城外環西路230號


移動網站

  • 官方微博

  • 官方微信

廣州大學版權所有     COPYRIGHT?1999-2021      粵ICP備 05008855號

找真人百家乐的玩法技巧和规则 | 大发888出纳柜台 在线| 大发888娱乐场优惠| 百家乐官网国际娱乐城| 百家乐网站那个好| 高额德州扑克视频| 申博百家乐官网下载| 澳门百家乐心| 澳门在线赌场| 杨公24水口| 大发888登录器下载| 澳门赌百家乐官网打法| A8百家乐娱乐场| 娱乐城百利宫娱乐| 玩百家乐官网必赢的心法| 现场百家乐机| 如何玩百家乐官网扑克| 百家乐那个平台信誉高| 麻栗坡县| 百家乐输了好多钱| 金濠娱乐城| 澳门百家乐官网网40125| 大发888娱乐场下载删除| 百家乐官网赌场分析网| 百家乐翻天超清| 百家乐官网平台哪个有在线支付呢 | 大发888中期| 百家乐官网怎样玩的| 威尼斯人娱乐城网站| 百家乐官网桌子轮盘| 百家乐荷| 百家乐官网闲庄和| 红树林百家乐的玩法技巧和规则 | 百家乐平台在线| 名人线上娱乐城| 做生意店子内风水布置| 顶旺娱乐| 百家乐路单破解器| 博赢国际娱乐城| 百家乐在发牌技巧| 全讯网|